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The galloping oscillation with a single rotational degree of freedom is investigated for a pris-
matic beam with a rectangular cross-section. For this particular geometric con"guration, the
e!ect of the unsteady aerodynamic forces can be understood as a combination of aerodynamic
sti!ness and damping terms, with the latter being the most relevant for the instability behav-
iour. A theoretical prediction of both these e!ects is made for this type of galloping behaviour,
based on a quasi-steady aerodynamic approach. Comparison to experimental results obtained
in wind tunnel experiments reveals signi"cant shortcomings of the quasi-steady approach in
predicting, in particular, the damping e!ect. For the sti!ness e!ect, the agreement is much
better. ( 2000 Academic Press
1. INTRODUCTION

1.1. AERODYNAMIC DAMPING AND STIFFNESS EFFECTS IN GALLOPING INSTABILITIES

WHEN AN OSCILLATING STRUCTURE is exposed to a steady homogeneous wind "eld, it experi-
ences a time-varying aerodynamic loading, which is induced by the relative motion between
the structure and the surrounding air. The component of the unsteady loading that is in
phase with the displacement of the motion can be regarded to act as an aerodynamic
sti!ness, while the component in phase with the velocity of the motion can be interpreted as
an aerodynamic damping. The sti!ness a!ects the frequency and mode shape of the
oscillation, with regard to the natural motion of the structure in the absence of aerodynamic
forces, while the damping e!ect determines the stability of the motion, i.e. the possible
growth or decay of the oscillation amplitude in time.

In the case of separated #ow, which is the situation normally encountered in many civil
engineering applications where wind loading dynamics are important, the wind load
relations are highly nonlinear with respect to the angle of incidence, and therefore, the
amplitude of the motion. This is also relevant for the type of instabilities referred to as
galloping (Blevins 1990; Dowell et al. 1995) which rely, fundamentally, on the occurrence of
negative aerodynamic damping (Parkinson & Smith 1964). Because of the nonlinear nature
of the aerodynamic loads, the stability depends on the motion amplitude, and this may
result in (multiple) regions of stable and unstable amplitudes, hence leading to (multiple)
limit-cycle solutions.

Typically, the analysis of the dynamical behaviour of these galloping problems follows
the approach of a weakly nonlinear perturbation of the natural modes (Blevins 1990). The
unsteady wind loads are modelled on the basis of a quasi-steady aerodynamic assumption,
employing static aerodynamic data measured in the wind tunnel. For galloping oscillations
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Figure 1. Modelling of one-degree-of-freedom galloping with combined translational and rotational e!ects
(cross-sectional view; rotation axis is at point O; ;

305
"R dh/dt).
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with only one degree of freedom (1-dof ), changes in the frequency of the oscillation are not
very relevant, and the in#uence of sti!ness e!ects can therefore often be omitted from the
analysis.

The subject of our present investigation is the galloping behaviour of the rotational
oscillation of a rigid, prismatic beam in a steady, homogeneous cross #ow normal to its axis
(see Figure 1). With regard to the aeroelastic behaviour of practical structures, the present
oscillator can be seen to represent a simpli"ed model of the case where the elastic axis is
located downstream of the aerodynamic axis. As shown in earlier studies (Haaker & van
Der Burgh 1994; van Oudheusden 1995), this con"guration can be seen as an extension of
the classical case of cross-#ow translational galloping (Parkinson & Smith 1964). In both
cases, the relevant aerodynamic force is the normal force component F

N
on the beam.

However, in contrast to the translational case, there is now a dependence on both the
angular displacement and the angular velocity, as is typical for rotational motions. The
major motivation for the interest in this speci"c con"guration lies in the fact that, as the
rotation arm length R is signi"cantly larger than the typical dimension of the cross-section
(for example its depth d ), more con"dence in the application of the quasi-steady theory can
be expected for this type of rotational galloping (van Oudheusden 1995), than for pure
torsion with the rotation centre close to the aerodynamic centre of the cross-section (Novak
1971; Nakamura & Mizota 1975; Blevins 1990). The validity of the quasi-steady approach is
further improved by the very low natural frequency (circa 0)6 Hz), chosen in order to
achieve very low values of the reduced frequency and eliminate vortex resonance e!ects as
much as possible.

1.2. THE ANALYSIS OF THE ROTATIONAL GALLOPING BEHAVIOUR

In the case of a rotational motion of the cross-section, the instantaneous aerodynamic force
depends on the (angular) displacement as well as on the (angular) velocity, so that both
aerodynamic sti!ness and damping e!ects are present. This is in contrast to translational
galloping, as considered by Parkinson & Smith (1964), for which sti!ness e!ects are absent
to "rst order. In our earlier studies, two methods have been developed for the analysis of the
dynamic galloping behaviour, both of which are examples of what is known as Melnikov's
method for weakly perturbed Hamiltonian (i.e. conservative) systems (Guckenheimer
& Holmes 1990). In this method, the stability of the orbits of a Hamiltonian system against
the perturbation of a nonlinear forcing is investigated by means of an averaging technique,
which e!ectively determines the average amount of work that is performed by the aerody-
namic forces during an oscillation cycle. Stable orbits then provide an approximation of the
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limit-cycles of the original nonlinear system. Below, a short characterization of both
approaches is given, while for reference the major results will be reviewed in Section 4.

In the weak-forcing approach, it is assumed that the wind forces remain su$ciently small,
so that the system oscillates in its natural mode (i.e. that which would occur without wind
load), and with the amplitude changing only slowly in time. By applying the averaging
method the time-rate change of the oscillation amplitude is obtained. The aerodynamic
damping can conveniently be expressed in terms of an aerodynamic damping coe$cient,
that is a function of the amplitude of the oscillation (Haaker & van Der Burgh 1994; van
Oudheusden 1995). This provides a description of the build-up or decay in time of the
amplitude, for given wind speed and constructional parameters such as the level of the
structural damping of the system. Limit cycles are found for those conditions under which
the total damping vanishes; galloping curves are obtained by displaying the limit-cycle
amplitudes as a function of the wind speed. Note that, in this approach, sti!ness e!ects have
been discarded altogether. Detailed experimental results for an oscillator where the system
damping is a combination of viscous and frictional damping have been reported for a beam
with a square cross-section (van Oudheusden 1996a). Good correspondence was found
between the observed galloping amplitudes, and the predictions based on static aerodynam-
ic force measurements. Deviations were only found for large oscillation amplitudes at low
wind speeds, where the experimental amplitudes were signi"cantly higher than predicted.

The strong-forcing approach is suggested by the observation that for large wind speeds
the leading-order aerodynamic e!ect is of conservative nature, viz., the wind force due to the
static displacement alone. A modi"ed analysis is obtained by including this term, in the
form of an &&aerodynamic potential'', in the Hamiltonian of the oscillation (van Oudheusden
1996b; Haaker & van Oudheusden 1997). This Hamiltonian system describes the aerody-
namic sti!ness e!ect and reveals how this a!ects the frequency and mode shape, as
a function of wind speed and oscillation amplitude. As a consequence of the nonlinear
nature of the aerodynamic forcing, the mode shape is no longer harmonic, while in addition
the frequency becomes amplitude-dependent. These predictions showed very good corre-
spondence with the experiments. Also, a (nonharmonic) averaging of the equation of motion
provides the stability of the oscillation, revealing typical strong-forcing e!ects on the
galloping behaviour, such as an increase in the limit-cycle amplitude for a given wind speed
and the existence of a critical wind speed, above which dynamic divergence of the motion
occurs. These aspects were indeed observed in the experiments. The analysis furthermore
predicts that the damping coe$cient (and hence the stability) is not noticeably a!ected by
the strong-forcing e!ects, as long as no signi"cant distortion of the mode shape from
a harmonic shape occurs. This con"rms the notion that shifts in the oscillation frequency
are not very relevant for (1-dof ) galloping, which explains why the weak-forcing approach
yields good results even at moderate forcing levels.

These later experiments, which were performed with a beam of rectangular cross-section,
showed very good agreement with the predictions as the aerodynamic sti!ness e!ects were
concerned. A lesser correspondence, however, was obtained for the damping e!ect, as
derived from the observed galloping (i.e. limit-cycle) amplitudes. A similar deviation as for
the rectangular cross-section was found at low wind speeds, but in addition, signi"cant
di!erences occurred at moderate wind speeds as well. This was surprising, in view of the
good agreement that had been obtained under similar conditions with the square cross-
section, and considering that no such deviations were found for the sti!ness e!ect.

For this reason a more detailed analysis of both the aerodynamic sti!ness and damping
e!ects for this cross-section is undertaken in the present paper. In addition, a simpli"ed
prediction of the sti!ness e!ect is made on the basis of the weak-forcing theory. The
amplitude decay equation that is obtained with the Melnikov method is identical to what is
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found with the standard averaging method or the method of two time scales (Guckenheimer
& Holmes 1990). These methods allow the use of a slowly varying phase, that provides
a "rst-order prediction of the oscillation frequency. This will be seen to yield a good
estimation of the aerodynamic sti!ness e!ect, that is virtually indistinguishable from the
results of the strong-forcing theory as long as the oscillation shape remains approximately
harmonic. Furthermore, it reveals that an interesting analogy exists between the aerody-
namic damping and sti!ness coe$cients, in the way they are related to the static force
coe$cient.

2. OSCILLATOR GEOMETRY AND EXPERIMENTAL SET-UP

2.1. DESCRIPTION OF THE OSCILLATOR GEOMETRY

The oscillator con"guration under investigation is a system with one degree of freedom. In
Figure 1 the major dimensions of the con"guration are de"ned in the cross-sectional plane,
normal to the rotation axis, while Figure 2 provides a schematic view of the set-up used in
the experiments. The structure can rotate around a horizontal hinge line, and contains
a prismatic beam (cylinder) that is subjected to a homogeneous cross-#ow perpendicular to
its axis. The span of the beam is denoted by b"0)35 m, and the cross-section has a constant
rectangular shape, with the height-to-depth ratio h/d being 0)625 in the present investiga-
tion. The depth d"40 mm of the cross-section is measured in the streamwise direction, and
the height h"25 mm, in the cross-#ow direction.

With the centre of gravity of the mobile structure lying below the hinge line, it operates as
a pendulum-type oscillator. In the dynamic analysis of the oscillator, the nonlinearity of the
restoring force is commonly neglected, and a constant sti!ness is assumed. Hence, the
aerodynamic forces on the beam are considered to present the only source of nonlinear
e!ects. Throughout the analysis it is further assumed that both the rotation angle h, as well
as the angle of attack a, remain small in magnitude.

2.2. DETAILS OF THE MODEL AND OSCILLATOR SET-UP

The oscillator structure consists of a rigid frame supported on low-friction knife bearings,
allowing a rotational motion about a horizontal axis. With adjustable counterweights the
weight of the beam model is balanced, while rigidly-connected vertical pendulum arms
Figure 2. Schematic lay-out of the oscillator; model: rectangular beam with circular end plates; damper:
aluminium inductive damper.



TABLE 1
Oscillator properties

Arm length R"0)30 m
Cylinder span b"0)35 m
Cylinder cross-section d]h"0)040 m]0)025 m
Natural frequency f

0
"0)619 Hz; u

0
"3)89 rad/s

Moment of inertia I"0)170 kg m2
Restoring force sti!ness k"2)57 N m
Mass parameter k"0)00131
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provide the restoring force. The oscillator motion is registered by an optical transducer that
is attached to the rotation axis of the structure, with an experimental resolution of about
0)13.

The major mechanical oscillator properties are summarized in Table 1. The restoring
force sti!ness was determined from a static calibration, while natural oscillation and
damping characteristics were derived from free oscillations and amplitude-decay registra-
tions. Additional damping could be provided by means of an inductive damper. Measure-
ments indicated that the system damping is predominantly of viscous character, but that
small amounts of frictional damping and quadratic damping were present as well; a dis-
cussion of the damping characterization can be found in Appendix A. Further details of
the oscillator construction and the experimental techniques have been documented in
van Oudheusden (1998).

The rectangular beam model is equipped with end-plates to obtain a two-dimensional
#ow over its span and to prevent interference with the boundary layers on the side-walls of
the wind tunnel. The wind tunnel is used with an open exit test-section of 0)4 m]0)4 m. By
using the oscillator structure as a mechanical balance, the aerodynamic static force data
were obtained in situ. These are presented in Figure 3 in the form of the aerodynamic
coe$cient c

M
, which will be de"ned in Section 3. The Reynolds number at which the static

data were obtained is about 2)7]104, based on the reference velocity ; in the test-section
and the cross-section depth d. The experimental uncertainty in the value of c

M
is approxim-

ately 0)02. A tabulated curve-"t representation of the data, as indicated in the "gure, has
been used for convenience throughout the further analysis. The diagrams in the lower part
of Figure 3 give the predicted variation of the corresponding aerodynamic damping and
sti!ness coe$cients, according to the weak-forcing theory, to be discussed in Section 4.2.

The reference #ow velocity ;, which represents the undisturbed wind speed in the
analysis, is measured at the entrance of the test-section, about 1)75 m upstream of the
oscillator. Flow blockage evidently increases the e!ective wind speed which the oscillator
experiences locally (the area blockage ratio in the experiment is about 6%). However, as the
same reference is used for the reduction of both the static force data and the results of the
dynamic tests, the blockage e!ect is automatically accounted for in the analysis, provided
that #ow blockage is essentially constant, and not a!ected by the Reynolds number of the
#ow or the increased unsteadiness of the #ow "eld during the dynamic tests.

3. QUASI-STEADY MODELLING OF ROTATIONAL GALLOPING

3.1. THE EQUATION OF MOTION

The aerodynamic forces on the structure produce a moment M around the rotation axis of
the oscillator. In addition, the motion is a!ected by system damping which is predominantly



Figure 3. Aerodynamic characteristics of the rectangular cross-section: (a) measured static aerodynamic force
characteristics (di!erent symbols indicate data for upwards and downwards displacement, respectively); (b)
calculated aerodynamic damping and (c) sti!ness coe$cients, as function of the aerodynamic amplitude of the

oscillation (weak-forcing theory).
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of a viscous nature, i.e. with the damping force proportional to the angular velocity. In the
following discussion, the e!ect of the small, nonviscous damping components will be left out
of consideration. In the actual data reduction, however, their in#uence has been included, as
has been documented in Appendix A.

The equation of motion in terms of the rotation angle h of the oscillator is written in
dimensionless form, with a dot indicating di!erentiation with respect to the nondimensional
time q"u

0
t, where u

0
is the natural radial frequency of the system, and reads

h$#h"!2f
0
hQ #ku2c

M
. (1)

Here, f
0

is the coe$cient of the viscous system damping, while the mass ratio k, the reduced
wind speed u and the aerodynamic moment coe$cient c

M
are de"ned by

k"
odbR3

2I
, u"

;

u
0
R

, c
M
"

2M

o;2dbR
(2)
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with I being the inertial moment of the oscillating structure, o the air density and ; the wind
speed. The relevant dimensions are d for the cross-sectional depth and b for the span of the beam
and R for the oscillator arm length (see also Figure 1 and Table 1 for the numerical values).

For the conditions under study, the terms on the right-hand side of equation (1) are
typically small, in particular at low wind speeds, resulting in a harmonic oscillator weakly
perturbed by system damping and aerodynamic forcing.

3.2. QUASI-STEADY MODELLING OF THE AERODYNAMIC FORCES

The aerodynamic moment M around the oscillator hinge axis is dominated by the e!ect of
the normal force F

N
on the beam. With h small with respect to R, the e!ect of the pitching

moment around the axis of the beam itself is several orders smaller and can be omitted.
Also, the dynamic e!ects of the beam angular velocity on the aerodynamic forces is
neglected, as discussed in van Oudheusden (1995). The coe$cient c

M
can then be related to

the aerodynamic characteristics of the cross-section by

c
M
"A
;

3%-
; B

2
c
N
(a). (3)

Invoking the quasi-steady #ow approach, the normal force coe$cient c
N

can be derived
from wind tunnel data for the con"guration under a static rotational displacement. The
e!ective angle of attack a and the relative #ow speed ;

3%-
are formed from the vectorial

di!erence between the wind speed ; and body velocity ;
305
"R dh/dt, and follow from

Figure 1 as

a+h!
hQ
u

, (4)

;
3%-
;

"

cos h
cos a

+1 , (5)

where the approximation involves the assumption of small angles a and h. As remarked
elsewhere (Haaker & van Der Burgh 1994; van Oudheusden 1995), the resulting system of
equations reveal that, for small displacements, the present oscillator is equivalent to
a vertically translating prismatic bar, such as considered extensively in Parkinson and
Smith (1964) and Parkinson (1989), which simultaneously performs an additional rotation
around its axis. This makes the con"guration mathematically equivalent to the case of pure
torsional galloping (Modi & Slater 1974; Blevins 1990), where a similar dependence on both
angular displacement and velocity is found. In the present con"guration, however, the
quasi-steady approach can be applied with more validity than for torsional motion where it
is highly questionable (Nakamura & Mizota 1975; van Oudheusden 1995).

Assuming the oscillator performs a harmonic oscillation at the undamped frequency
u

0
and with a constant amplitude, it follows from equation (4) that the angle of incidence

a varies harmonically as well, but with a shift in phase,

h"hK sin q, a"aL sin(q!/). (6)

Here, the hatted variables are used to denote the amplitude of a time-periodic quantity. For
convenience, we may call hK the structural amplitude and aL the aerodynamic amplitude of the
oscillation. From equations (4) and (6), we derive

aL "hK S1#
1

u2
, tan /"

1

u
. (7)
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Note that the kinematics of the oscillation is governed only by the value of the reduced wind
speed u, and that the phase lag / is independent of the oscillation amplitude. For the
limiting situations, where u is either much smaller or larger than unity, the above expres-
sions reveal that, for u@1 the con"guration is aerodynamically equivalent to a purely
translational motion, with a dominated by the velocity component of the motion. On the
other hand, for uA1, the oscillator can be regarded to operate in a &&full rotation regime'',
with a nearly equal to the rotation angle h itself. Note, however, that although the phase lag
is seen to decrease as u grows, its existence remains essential for the motion to be able to
extract energy from the #ow "eld (van Oudheusden 1995).

Considering now the more general situation, where the oscillation is harmonic but at an
arbitrary frequency, i.e. not necessarily identical to u

0
, so that h"hK sin Xq, where

X"u/u
0

is the frequency ratio. Then, again starting from equation (4), the following
relations are obtained which relate structural motion and aerodynamic behaviour:

aL "hK S1#
X2

u2
, h"

hK 2
aL 2 Aa#

aR
uB , hQ "

hK 2
aL 2 AaR !X2

a
uB . (8)

4. ANALYSIS OF THE DYNAMIC BEHAVIOUR

4.1. LINEAR ANALYSIS

To illustrate the sti!ening and dampening e!ects of the aerodynamic forcing, the "rst
situation to be considered is where c

M
is linear in a, say

c
M
"aa , (9)

where a is a constant. For a symmetric cross-section, this can be regarded as a linearization
around the equilibrium position. Substitution of this expression into the equation of
motion, equation (1), and with a given by equation (4), yields

h$#h"!2f
0
hQ #kua(uh!hQ ). (10)

This reveals that the e!ect of the aerodynamic forces can be interpreted as the sum of an
aerodynamic sti!ness and an aerodynamic damping. The solution can be written as
h(q)"hK (q) cos(Xq), and which displays the following properties:

dhK
dq

"!f
0
hK !ku

a

2
hK , X"

u
u

0

"J1!ku2a . (11)

The damping and sti!ness e!ect have been expressed here in terms of, respectively, the
amplitude decay rate dhK /dq, and the frequency ratio X, where the e!ect of the damping on
the frequency has been neglected. Note that the aerodynamic damping e!ect is proportional
to u, and the aerodynamic sti!ness e!ect to u2. Also, when a is negative the aerodynamic
force is destabilizing in the dynamic sense (negative damping), which corresponds to Den
Hartog's stability criterion (Blevins 1990), but statically stabilizing (positive sti!ness) for the
present oscillator con"guration.

4.2. WEAK-FORCING GALLOPING ANALYSIS (LOW WIND SPEEDS)

Under weak-forcing conditions, the nonlinear system of equation (1) can be regarded as
a perturbation of the free motion of the undamped oscillator. Using the general method of
two time scales, the solution is written as

h"hK sin(q#t), hQ "hK cos(q#t). (12)
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Applying standard averaging techniques, the following equations are obtained for the slow
time behaviour of the amplitude hK and phase angle t:

dhK
dq

"!f
0
hK !kucf hK , (13)

dt
dq

"ku2c
k
, (14)

where c
f
and c

k
are aerodynamic damping and sti!ness coe$cients, conveniently de"ned as

more or less the generalization of the linear results of equation (11), and which follow from
the averaging procedure as

cf"!

u

hK 2
Sc

M
(a) hQ T, c

k
"!

1

hK 2
Sc

M
(a) hT. (15)

Here the brackets S T indicate the averaging operation, which is performed over an
oscillation period, during which the slowly varying amplitude and phase are assumed
constant. Using relations (8) with X"1, these coe$cients can be expressed completely in
terms of a, yielding

cf"
Sc

M
(a)(a!uaR )T

aL 2
"

Sc
M

(a)aT
aL 2

, (16)

c
k
"!

Sc
M

(a)(a#aR /u)T
aL 2

"!

Sc
M

(a)aT
aL 2

. (17)

In both expressions, the second term vanishes upon averaging, for any function c
M

(a). For
the damping coe$cient, this second term represents the conservative component of the
aerodynamic force, while for the sti!ness coe$cient, it is the dissipative component.

This reveals that both cf and c
k
are functions only of aL , the aerodynamic amplitude of the

oscillation. Moreover, the way they are related to aL through the steady force coe$cient c
M

is
identical for both coe$cients, to the extent that cf"!c

k
. Note that the result that was

obtained in Section 4.1 for a linear forcing, cf"!c
k
"a/2, is seen to constitute a speci"c

case of this relation. Figure 3(b,c) displays the predicted cf(aL ) and c
k
(aL ) functions, for the

experimental con"guration under consideration, and derived from the measured static
c
M

(a) curve.
The damping coe$cient cf describes the stability of the motion, as re#ected by the

amplitude-transient relation of equation (13). Similarly, the aerodynamic e!ect on the
oscillation frequency ratio X"u/u

0
is governed by the sti!ness coe$cient c

k
, according to

X"

u
u

0

"1#
dt
dq

"1#ku2c
k
. (18)

In the sense of a "rst-order approximation for small values of ku2, the following expression
may be regarded to be equivalent to equation (18):

X"J1#2ku2c
k
. (19)

This second form is preferred for practical predictions, because it is expected to yield
a better description of stronger forcing e!ects, as motivated by comparison with equation
(11), which is the exact result for the linear forcing case.

Note, furthermore, the interesting observation that at the amplitude where the aerody-
namic damping is zero, the aerodynamic sti!ness e!ect vanishes as well. As a consequence,
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for cases where the aerodynamic damping is dominant, the limit-cycle oscillation is
predicted to occur at approximately the natural frequency, even at wind speeds where the
aerodynamic forcing levels have become signi"cant.

4.2.1. E+ect of oscillation frequency

According to the weak-forcing approach the aerodynamic sti!ness has to "rst order no
e!ect on the stability of the oscillation. It can be shown that this is true even when
signi"cant variations of the frequency occur, provided that the oscillation shape remains
approximately harmonic. This can be illustrated by the following analysis, in which the
equation of motion is adapted by including the frequency ratio X"u/u

0
in the sti!ness

term, to represent a change in the natural frequency,

h$#X2h"!2f
0
hQ #ku2c

M
(a). (20)

The de"nition of the nondimensional time q"u
0
t remains unaltered, but with u

0
now

merely acting as a reference scale, without necessarily having the meaning of the natural
frequency. Application of the averaging method is now to be carried out using

h"hK sin(Xq), hQ "hK X cos(Xq), (21)

which yields the following amplitude-transient equation:

dhK
dq

"!f
0
hK !kucfhK . (22)

The result for cf as function of aL is found to remain una!ected, as follows from

cf"!

u

X2hK 2
Sc

M
(a)hQ T"

Sc
M

(a)(X2a!uaR )T
X2aL 2

"

Sc
M

(a)aT
aL 2

, (23)

whereas with X2"1#O(ku2), the e!ect of X on the aL }hK relation, see equation (8), is only
O(k) and therefore negligible, as in the present experiments the value of k lies in the order of
10~3. It can hence be concluded that a shift in the oscillation frequency has no notable e!ect
on the stability behaviour, provided that k is small (and that the nonviscous damping e!ects
are not dominant, see Appendix A).

4.3. STRONG-FORCING GALLOPING ANALYSIS (HIGH WIND SPEEDS)

As outlined above, the aerodynamic forcing contains an aerodynamic sti!ness e!ect. This
may become appreciable with respect to the elastic forces, for increased values of the
parameter e"ku2, which describes the strength of the &perturbation level' of the mechanical
oscillator system by the aerodynamic forces. The mass parameter k is generally small when
considering a structure in a wind "eld. Therefore, also in the present context e can only
become signi"cant when increasingly high wind speeds are considered. Furthermore, note
from equations (11) and (14), that the aerodynamic sti!ness e!ect is quadratic in u, whereas
the damping contribution is linear in u. It is generally true, for large u, which is a necessary
condition for sti!ness e!ects to become relevant, that the leading order term of the
aerodynamic forcing leads to a conservative contribution to the energy balance of the
oscillation, while the largest dissipative term is one order of u smaller than this, as illustrated
by the following Taylor expansion:

ku2c
M

(a)"ku2c
M Ah!

hQ
uB+ku2c

M
(h)!kuc

Ma
(h) hQ (24)
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with c
Ma

indicating the local slope of the c
M

(a) curve. This observation provides a way to
extend the perturbation analysis to higher wind speeds, by considering the Hamiltonian
system that is obtained by including the (leading-order) aerodynamic sti!ness terms, to
which the remaining nonconservative terms can be regarded to act as a weak perturbation,
i.e. writing the equation of motion as

d

dq
H

s
(h, hQ )"F

s
(h, hQ ), (25)

where H
s
is the e!ective Hamiltonian for the strong-forcing analysis,

H
s
(h, hQ )"

hQ 2#h2
2

#ec
G
(h), (26)

and F
s
is the perturbing forcing function,

F
s
(h, hQ )"!2f

0
hQ 2#e(c

M
(a)!c

M
(h)) hQ . (27)

In equation (26), c
G

is de"ned from c
M

(h)"!dc
G
(h)/dh and is the coe$cient of what can be

regarded the mechanical potential of the oscillator due to the steady aerodynamic force that
results from a static displacement angle h (an &&aerodynamic potential''). This approach
relaxes the condition of validity of the perturbation analysis to u@k~1, instead of u@k~1@2

which applies in the weak-forcing theory, and which for the present value of k extends the
condition from u@30 to u@103. A more rigorous mathematical treatment of the method
can be found in Haaker & van Oudheusden (1997).

The oscillation shape is approximated by the orbits (periodic solutions) of the Hamil-
tonian system, that are generated by constant values of H

s
. Assuming the aerodynamic force

function c
M

is antisymmetric in a (as it is for a symmetric cross-section), the amplitude hK of
the oscillation can be de"ned uniquely, as the extreme positions of an orbit are located
symmetrically with respect to h"0. The constant value of the Hamiltonian of the orbit can
be related to the oscillation amplitude, hK , as

H
s
(h, hQ )"H

s
(hK , 0)"

hK 2
2
#ec

G
(hK ). (28)

Further, the orbits possess symmetry with respect to both axes of the (h, hQ )-phase plane,

hQ 2"hK 2!h2#2e[c
G
(hK )!c

G
(h)] (29)

with which the oscillation frequency is obtained as

X"A
2

n

h4

P
0

dh
hQ B

~1
"A

2

n

h4

P
0

[hK 2!h2#2eMc
G
(hK )!c

G
(h)N]~1@2 dhB

~1
. (30)

To summarize the major conclusions of the strong-forcing analysis as far as the mode shape
is concerned, the aerodynamic sti!ness e!ects result in a change of the oscillation frequency,
where due to the nonlinearity of the aerodynamic sti!ness, the frequency has become
amplitude dependent. Also, the oscillation shape is distorted from its original harmonic
shape. For the present con"guration, where the aerodynamic force is statically stabilizing
for small de#ections, but statically destabilizing at larger angles, the oscillation frequency
decreases for larger amplitudes, up to the point where divergence of the motion is found to
occur.
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The stability of the oscillation is obtained from averaging equation (25), which with
equations (27) and (29), yields

d

dq
H

s
(h, hQ )"!(f

0
#kucf)S2hQ 2T, (31)

while equation (28) allows the left-hand side to be related to the amplitude decay, dhK /dq, by

d

dq
H

s
(h, hQ )"

d

dhK
H

s
(hK , 0)

dhK
dq

"[hK !ec
M

(hK )]
dhK
dq

. (32)

The aerodynamic damping coe$cient, cf , de"ned in a similar manner as in the weak-forcing
approach, now follows as

cf"!u
S(c

M
(a)!c

M
(h))hQ T

S2hQ 2T
"!u

Sc
M

(a)hQ T
S2hQ 2T

. (33)

Alternatively, with the approximation for uA1 and invoking equation (24), cf can be
written as

cf+
Sc

Ma
(h)hQ 2T

S2hQ 2T
. (34)

This shows that, in general but provided that u is large, cf is therefore a function of the
oscillation amplitude hK and, through equation (29), of the perturbation parameter e as well.

Determination of the aerodynamic sti!ness and damping e!ects for a given aerodynamic
characteristic c

M
(a), requires numerical evaluation of the integral in equation (30) to

determine the frequency, and of the averaged expressions in equations (31) and (33) or (34) in
order to assess the stability of the oscillation. The value of the aerodynamic sti!ness
coe$cient c

k
can be inferred from X, by regarding equation (19) as its general de"nition. As

will be shown later, it is found that the di!erences with the weak-forcing theory are very
small even for signi"cant variations of the frequency, as long as the oscillation shape
remains approximately harmonic. This is in accordance with what was found in Section 4.2
by means of the simpli"ed aerodynamic sti!ness analysis based on equation (20).

Finally, a remark should be made on the behaviour of the strong-forcing theory in the
limit of small e. For a proper asymptotic behaviour the results should then evidently
become identical to those of the weak-forcing theory. Indeed, for a harmonic oscillation at
the natural frequency u

0
, the expression of equation (33) for the aerodynamic damping

coe$cient reduces directly to equation (15). Similarly, partial integration allows the expres-
sion of equation (34) to be reduced to the form of equation (16). The only di!erence between
these latter results, however, lies in the fact that for the weak-forcing theory cf is a function
of aL , whereas in the strong forcing hK is used. There is no direct disagreement in this, as the
derivation of equation (34) was based on equation (24) which is valid only for uA1, in which
case hK +aL . This observation suggests that, for a proper comparison between weak- and
strong-forcing predictions, the oscillation amplitude is to be interpreted in the aerodynamic
sense (i.e. taking aL ) also in the strong-forcing approach. A similar argument holds for the
aerodynamic sti!ness coe$cient, but at low wind speeds this e!ect is evidently of less
practical relevance for the dynamic behaviour anyway.

5. EXPERIMENTAL INVESTIGATION

5.1. GALLOPING CURVES

Dynamic measurements were carried out in the form of galloping tests, where the evolution
of the oscillation amplitude in time was recorded, and during which the wind speed and the



Figure 4. Galloping amplitudes for di!erent damping levels. Symbols indicate experiments and curves quasi-
steady predictions (**, weak-forcing theory; } } }, strong-forcing theory). (a) damper setting &&0''; (b) damper

setting &&4''.
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system damping were maintained at a constant level. Limit-cycle amplitudes were identi"ed
and in order to investigate the possible presence of multiple limit cycles, tests were
performed with di!erent initial amplitudes of the oscillation. Examples of such test results
have been reported in van Oudheusden (1996a,b). This procedure was then repeated for
a large number of di!erent wind speeds to obtain the galloping curve, i.e. the dependence of
limit cycle amplitudes on wind speed. Galloping tests were conducted for "ve di!erent levels
of the system damping. In the context of the present discussion, only the galloping curves for
the lowest and highest damping levels are presented in some detail, in Figure 4. The values
of the corresponding damping parameters can be found in Appendix A.

The galloping curve for the lower damping case is shown in Figure 4(a), where the data
symbols display the observed limit-cycle amplitudes, hK , as a function of the reduced wind
speed u. Note that, at low wind speeds, some data were obtained near the lower branch of
unstable limit cycles as well. The solid and dashed curves represent the predictions
according to, respectively, the weak- and strong-forcing theories. These di!er only in an
additional increase of the limit cycle amplitude with u for higher wind speeds, and which
appears fairly consistent with the experiments. For the stable limit cycles, the error bar
indicates the range of unsteady variation of the limit cycle amplitude in the experiments,
which grows with wind speed due to the increased strength of the unsteady component of
the aerodynamic forces. Notwithstanding this unsteadiness, the strong-forcing theory
appears to provide a good prediction of the mean amplitude value and its increase with
wind speed. Deviations from the (quasi-steady) theory occur in particular at low wind
speeds, for u below the value of 5, where the large limit-cycle amplitudes lie signi"cantly
higher than predicted. Similar behaviour has been observed for the rotational galloping of
a square cross-section (van Oudheusden 1996a).
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A further investigation of the validity of the quasi-steady analysis can be carried out by
using the observed limit cycle amplitudes to calculate the corresponding values of the
aerodynamic damping coe$cient cf , where, according to equation (13),

cf"!

f
0

ku
. (35)

In the bottom diagram of Figure 4(a), these experimental results are compared with the
quasi-steady prediction according to the weak-forcing theory, and which employs the static
force measurements. As suggested by the theory, aL is used as the relevant amplitude along
the horizontal axis, and which is calculated from equation (7). Also this representation of the
data reveals that there are signi"cant deviations between experiment and theory. This holds
especially for the data that correspond to the low wind speed range, and with the
discrepancy increasing for progressively lower wind speeds. The data points that lie close to
the horizontal axis represents the increase of the galloping amplitude due to the strong wind
e!ects. The galloping curve for this con"guration contains information mainly for large
oscillation amplitudes. Some data have been obtained for small amplitudes, but as these are
derived from unstable limit-cycle amplitudes they may be not very accurate.

In Figure 4(b) the galloping curve is depicted for the highest damping case considered in
the experiments. The experimentally observed region which displays multiple limit cycles, is
seen to extend to a much larger range of wind speeds than predicted. This is also re#ected in
the lower graph, which shows that a much larger variation of the damping coe$cient with
amplitude occurs, than is predicted on the basis of the steady force characteristics.

For evidence to be discussed later, it is unlikely that this e!ect can be attributed to errors
in the static force measurements, which would moreover have to be quite large in order to
explain the extent of the di!erences observed here. The most likely explanation is, hence,
deviations from the assumptions on which the quasi-steady predictions are based.

5.2. STIFFNESS AND DAMPING CURVES AT CONSTANT WIND SPEED

It should be realized that, although the set of damping data in Figure 4(b) provide a more or
less continuous curve in the cf-graph, they represent conditions at largely varying values of
u, and it is only on the basis of the quasi-steady theory that a unique curve is expected to
occur. However, the experiments, Figure 4(a) in particular, suggest that there is evidence of
a signi"cant dependence of the damping curve on wind speed. In order to investigate this in
more detail, the variation of the sti!ness and damping with amplitude needs to be studied
for "xed values of the reduced wind speed u.

The limit-cycle amplitudes of a single galloping curve contain only very limited informa-
tion about the damping behaviour at a given wind speed. This can be supplemented by
generating di!erent galloping curves, by varying the system damping level. In the present
investigation, "ve damping levels were applied (see Appendix A for details). In addition to
these data derived from limit-cycle oscillations, a second procedure was followed in which
an analysis was made of recordings of the transient oscillation behaviour. To this end, an
accurate registration of the motion was performed for a limited number of test runs. These
time records of the oscillator displacement were subsequently analyzed to obtain detailed
aerodynamic sti!ness and damping characteristics as a function of the oscillation ampli-
tude, at constant wind speed. This was achieved by determining the instantaneous values of
the amplitude and frequency of the oscillation, after which the amplitude decay or ampli"-
cation rate was derived, using data of "ve adjoining semi-periods. In this way a more or less
continuous damping and sti!ness curve over a range of amplitudes for a "xed value of u can



Figure 5. Frequency}amplitude characteristics at di!erent wind speeds; s u"4)4, e"0)025; h u"9)1,
e"0)108; e u"13)4, e"0)236; n u"16)0, e"0)337; £ u"17)7, e"0)409; ¢ u"19)4, e"0)491.
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be obtained from a single time record. The experimental inaccuracy is about 0.13 in the
amplitude, and less than 1% in the frequency ratio X, for amplitudes above 1}23.

In Figure 5 the frequency ratio X is shown for a number of di!erent wind speeds and is
plotted as a function of the aerodynamic amplitude of the oscillation, aL , as suggested by the
quasi-steady theory. In correspondence with theory, the amplitude for which the sti!ness
e!ect vanishes is indeed found to be approximately the same for all wind speeds. Its value,
about 13.53, agrees well with the predictions (cf. Figure 3).

From the values of the frequency ratio X and the decay rate dhK /dq obtained from the
time-record data, corresponding values of the aerodynamic sti!ness and damping coe$-
cients can be calculated, according to equations (19) and (22), as

c
k
"

X2!1

2ku2
, cf"!

1

ku A
1

hK
dhK
dq

#f
0B . (36)

Note that, for very low values of e"ku2, which occur at low wind speeds, X is very nearly
unity, so that the determination of the sti!ness e!ect becomes unreliable, while under these
conditions, the small e!ect of the nonlinearity of the pendulum-type restoring force needs to
be taken into account as well. Furthermore, as is discussed in Appendix A, the value of ) is
involved also in the calculation of the damping coe$cient, when the nonviscous compo-
nents of the damping are included.

For the predominant part of the galloping investigation, a reduced data-storage proce-
dure had been followed, in which only the subsequent extreme positions of the oscillator
motion were recorded. These data records therefore provide only sequential amplitude
data, but contain no accurate time data from which the frequency can be determined. Also
from these records the damping curves were derived, by the same method as above; for this
the missing frequency data is provided for by an estimation using the weak-forcing theory.
As analysis of the frequency data from the complete records reveals, this prediction is in
close agreement with experiments for those conditions where the sti!ness e!ects are
relevant. The same frequency estimate was also used in the calculation of the damping data
from the limit-cycle amplitudes.

For increasing values of the reduced wind speed, Figures 6 and 7 depict, respectively, the
values of the aerodynamic damping and sti!ness coe$cients, plotted against aL . The data



Figure 6. Aerodynamic damping coe$cients. Symbols indicate data derived from time records (# and ]) or
from limit-cycle amplitudes (h); **, weak-forcing theory; } } }, strong-forcing theory.
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that are derived from the transient records are represented by the small symbols (such as
# and ]), where di!erent symbols indicate di!erent individual runs (time records). The
damping data derived from the limit-cycle amplitudes in the galloping curves are denoted
by the box symbols (h). In general, there is good agreement between the results of the two
approaches. Especially at low wind speeds, the transient data show a fair amount of scatter,
because the amplitude change over an oscillation period is only very small, so that it is
di$cult to determine the local amplitude decay or ampli"cation rate accurately. For the
highest wind speed, on the other hand, there is some disagreement between the limit-cycle
data and the transient data at large amplitudes. In this respect it is to be noted that the
time-record data correspond to a particular realization of a transient oscillation motion.
The increased #ow unsteadiness at higher wind speeds, as witnessed also by the error bars in
Figure 4, is likely to a!ect the accuracy of the time-record analysis, while also larger



Figure 6. Continued.
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variations may occur among di!erent realizations. The galloping data, on the other hand,
are based on the average values of the limit-cycle amplitudes, and are more representative of
the average damping e!ect under these conditions. The latter also show good agreement
with the theory.

The di!erent curves represent the quasi-steady predictions, with the solid and dashed
lines indicating, respectively, the weak- and strong-forcing theory; the latter is included only
when e'0.1. Signi"cant nonlinear sti!ness e!ects are seen to occur only at large ampli-
tudes and high wind speeds, otherwise the di!erences between the two predictions are very
small.

At moderate and high wind speeds the sti!ness e!ect is very well predicted, which may
con"rm the correctness of the static force measurements, and their relative insensitivity to
Reynolds number. The agreement for the damping e!ect, however, is much less. In
particular, for the intermediate amplitude range the variation with the amplitude is larger



Figure 7. Aerodynamic sti!ness coe$cients. Symbols and line types are the same as in Figure 6.
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than predicted. At decreased wind speeds additional e!ects are seen to occur. At u"4)4,
both sti!ness and damping e!ects are seen to be signi"cantly increased with respect to the
predictions, for amplitudes up to 103, whereas for higher amplitudes, correspondence with
theory is again good. When progressively lowering the wind speed, the damping e!ect is
seen to be increased further (no reliable sti!ness data could be extracted for these condi-
tions). In addition, the intersection with the horizontal axis, representing the amplitude for
which the damping vanishes, is observed to move to higher values. This latter e!ect explains
why the galloping curve of Figure 4(a) displays increased values of the galloping amplitude
at low wind speeds. Also, from these results it becomes clear that the variation observed in
the damping curve of Figure 4(b) has been ampli"ed by this velocity dependence: the
relatively weak damping data (near 6}73) correspond to limit-cycle oscillations at high wind
speeds, whereas the strong damping data (near 8}93) correspond to low wind speeds.
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6. DISCUSSION

6.1. THE AERODYNAMICS OF GALLOPING

In summary, the results of Figures 6 and 7 reveal that for moderate wind speeds the
correspondence between experiments and theory is very good where the sti!ness e!ects are
concerned, whereas for the damping e!ect, signi"cant deviations are observed. This is
remarkable, as fairly good agreement for the damping predictions had been found in similar
experiments with a square cross-section. The quasi-steady theory predicts both e!ects to be
identical, albeit opposite in sign, so the good agreement for the sti!ness data would rule out
signi"cant and systematic errors in the static force data. Additional deviations from theory
were observed to occur at low wind speeds, with the value of the reduced wind speed
u below 5, which had also been found for the square section. This may suggest that the latter
e!ect is possibly to be attributed to a common cause, such as a Reynolds number e!ect in
the set-up or a fundamental shortcoming of the quasi-steady approach, whereas the "rst
e!ect may be more speci"c to the rectangular cross-section.

In this section, a number of e!ects are considered as possible or likely causes for the
observed deviations. At present, insu$cient experimental evidence is available to support
a de"nitive explanation. This would certainly require additional experimental validation or,
alternatively, a numerical investigation of suggested trends. For these reasons the discussion
is necessarily restricted to a tentative assessment of whether certain e!ects can be held
responsible for these deviations and, if so, in what sense and to which extent.

For reference and better understanding, let us "rst review the characteristics of the
separated #ow that occurs around rectangular cross-sections, and associated with it the
mechanisms of the galloping instability behaviour. The basic #ow structure of these shapes
and the way this a!ects galloping have been discussed in detail by several authors, see, e.g.
Nakamura & Hirata (1989, 1994), Novak (1971), Laneville & Parkinson (1971), and
Parkinson (1989) from which the following summary is derived.

A galloping instability that starts from rest (soft galloping) is found to occur for
rectangular shapes where the depth-to-height ratio d/h lies between 0)75 and 3, approxim-
ately. The basic excitation mechanism for the galloping behaviour is explained from the way
in which the shear layers that separate from the front corners, interact with the surfaces of
the side faces. The ratio d/h, or more generally the shape of the afterbody, evidently plays an
important role in this. For a small positive (i.e. clockwise) angle of attack, the curvature of
the lower shear layer will be stronger than that of the upper shear layer, so that the induced
pressure on the lower side is lower than that on the upper side. A downward force results
which induces the galloping instability. At a certain angle of attack, the lower shear layer
attaches on the surface, which is accompanied by a rise in the side pressure which
counteracts the suction e!ect mentioned earlier. Hence, at larger angles the (downward) side
force decreases in magnitude and eventually becomes directed upward. This limits the
galloping instability and leads to a limit-cycle oscillation. The galloping e!ect is evidently
con"ned to a smaller range of angles when the rectangle becomes longer, as #ow reattach-
ment takes place earlier then. For su$ciently large d/h, the shear layers attach already at the
symmetrical orientation, i.e. with a"0, and hence the galloping tendency disappears
altogether. For short rectangles, on the other hand, the galloping mechanism is
absent at small angles of attack, because the upper and lower shear #ows can
communicate through the wake region. This adjusts the pressure di!erence and instead
a small upward force results. At larger angles the interaction of the lower shear layer
with the side face can suppress this pressure adjustment and the galloping instability returns
(hard galloping).



1138 B. W. VAN OUDHEUSDEN
6.2. QUASI-STEADY AND UNSTEADY FLOW ASPECTS

In order to identify possible defects of the quasi-steady modelling, it may be worthwhile to
consider the results of the unsteady airfoil theory. This comparison is purely for illustrative
purposes, as it should by no means be assumed that the airfoil theory can be applied to
separated #ows. The airfoil theory displays nonseparated #ow, where the circulation is
determined by the Kutta condition, for which no equivalence exists in separated #ow.
Bearing this in mind, if the rectangular cylinder model were to be replaced by a thin wing,
the unsteady wind loads can be written in the present notation as

c
M
"C (k) cN

Ma
a#c

Mi

d

R

hQ
u

. (37)

The "rst term is the circulatory lift contribution, with cN
Ma

the static force derivative and
a the e!ective, dynamic angle of attack, for which

cN
Ma
"2n A1#

d

4RB+2n, a"h!A1!
d

4RB
hQ
u
+h!

hQ
u

. (38)

These expressions re#ect the classic airfoil results that the steady lift-slope is equal to 2p,
with the lift acting at the quarter-chord point, and the angle of attack determined by the
e!ective upwash velocity at the three quarter-chord point. The e!ect of these exact positions
is seen to become unimportant when d/R is small, as is the case for the present con"guration
(d/4R"0)03). Anyway, as these results are speci"c to the airfoil theory, they should not be
expected to have any direct meaning for separated #ow. The function C (k) represents
Theodorsen's function, which describes the #uid memory e!ect.

The second term in equation (37) is a dynamic curvature e!ect. For the airfoil c
Mi

"n/2,
hence of the same order of magnitude as the lift-slope (c

Mi
/cN

Ma
"1

4
).

As mentioned, the airfoil results are not directly transferrable to the separated #ow
around a beam with a rectangular cross-section, but they serve to reveal a number of
mechanisms that may be addressed in a critical assessment of the quasi-steady modelling
that has been applied in the present case, (cf. Nakamura & Mizota 1975).

6.2.1. Dynamic curvature

Firstly, consider only the dynamic curvature e!ect, which results from the variation of the
angle of attack over the cross-section. For the thin wing, where c

Mi
is constant, it contri-

butes only to the damping and not to the sti!ness, because of its direct dependence on hQ ,

cf"
1

2 AcN Ma
!c

Mi

d

RB , c
k
"!

1

2
cN
Ma

, (39)

while in addition there is no e!ect of u. For the wing this contribution would be negligible
when d/R is small, as in the present con"guration. It is indeed this consideration which
suggests, as stated in the Introduction, that the quasi-steady approach is in general expected
to possess better validity here, than it would for torsional rotations where d and R are of the
same order of magnitude. However, a signi"cant net e!ect can remain even for small d/R, if
the sensitivity of the cross-section to dynamic curvature were large. Steinman (1950)
suggested that this e!ect could be determined experimentally by measurement of the steady
#ow around a curved model, but such a concept may not necessarily be valid for separated
#ow (Nakamura & Mizota 1975). Although in absence of direct evidence, a number of
reasons can be mentioned in support of why the rectangular section would display a larger
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curvature sensitivity than the square cross-section, apart from a direct geometrical consid-
eration, i.e. the slenderness of the cross-section. As mentioned in the preceding section, the
galloping tendency disappears for longer cross-sections, so that the rectangular cross-
section is evidently closer to the critical geometry. Also, experiments on a 2 : 1 cross-section
revealed a much stronger sensitivity to free stream turbulence than for a square cross-
section (Laneville & Parkinson 1971). Finally, notwithstanding the large deviations for
intermediate angles, reasonable agreement is again found for larger angles, for which the
damping decreases. A possible reason may be that the #ow is especially sensitive to
curvature as long as there is an interaction of the shear layers with the side faces, but that
this sensitivity disappears when "rm reattachment of the shear layers has taken place.

So, in summary, the fact that the damping is a!ected but not the sti!ness, the sensitivity to
the cross-sectional shape and its relative independence of u, make this curvature e!ect
a likely candidate to explain the deviations from theory that are observed at these moderate
wind speeds. Further research, either experimental or by means of advanced numerical #ow
simulation, will be required to validate this, and investigate the responsible physical
mechanisms.

Note that this curvature e!ect is absent in translational galloping. Therefore, the corre-
sponding deviation would not be observed in that type of galloping, although the author
does not know of such a study of a rectangular cross-section with similar detail in the
comparison of experiment and quasi-steady theory as Parkinson's investigation of the
square section (Parkinson & Smith 1964).

6.2.2. Fluid memory

The #uid memory e!ect expresses the in#uence of vorticity in the wake, and is also referred
to as the circulation lag e!ect. Qualitatively, it can be explained as follows. If by a change in
a the circulation (and hence the lift) of the body changes, vorticity of opposite sign is shed
into the wake, upon which it is convected downstream. At the body, this wake vorticity
induces an additional vertical velocity and, hence, changes the e!ective angle of attack. The
oscillation frequency determines the strength and periodicity of the wake vortex system. In
airfoil theory this is described as in equation (37) by Theodorsen's function C(k), where k is
the reduced frequency, based on the semi-chord. With our present notation, k is related to
u as k"d/(2Ru). For the geometry under consideration this yields a value of k"0)01 at
u"5. The value of k and hence the #uid memory e!ect evidently increases when lower
values of u occur. For the airfoil the consequence of the #uid memory e!ect is that the wake
vorticity results in an attenuation and a phase delay of the aerodynamic forces (or,
alternatively, of the e!ective a) with respect to the quasi-steady results in which the wake
e!ect has been discarded. The lag e!ect can be illustrated qualitatively by elaborating the
vorticity shedding concept. With cN

Ma
positive, an increase in a is accompanied by a shedding

of negative vorticity which reduces the e!ective a, while a decrease in a has the opposite
e!ect. Hence, a delay results.

An attenuation of the e!ective value of a can explain why the galloping amplitudes at low
values of u are higher than predicted, as a given value of the e+ective aL would then require
a larger value of hK . However, if this were the only relevant mechanism, an overall attenu-
ation would evidently also reduce the level of the damping e!ect, whereas in contrast it is
seen to be ampli"ed. Also, from the shape of the curves, there appears to be no signi"cant
shift to larger values of a in general (e.g. the peak position remains near a"83), as would be
consistent with the notion of an overall attenuation e!ect on a.

If the lag in#uence of the #uid memory e!ect can be interpreted as a simple phase delay of
a with respect to the quasi-steady case, it can be seen to increase the phase shift angle
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/ between a and the de#ection angle h, see equation (6), and which is related to u by
equation (7) according to the quasi-steady approximation. When the nonlinear force
characteristic is approximated by an average value of its slope, cN

Ma
, it follows directly from

the de"nitions, equations (16) and (17), that the aerodynamic damping and sti!ness
coe$cients for a constant value of u are proportional to sin / and cos /, respectively. An
additional delay that increases the value of / would thus augment the damping but weaken
the sti!ness e!ect. As with decreasing wind speed, the observed deviations in the damping
become larger, whereas the increased value of / reduces the sensitivity to a delay, this would
require the delay itself to increase signi"cantly. The "rst argument, however, is in clear
contrast to the experimental observation at u"4.4 (with /"133), where both damping
and sti!ness e!ect are seen to be ampli"ed signi"cantly. Moreover, if the vorticity mecha-
nism used to illustrate the lag e!ect for the airfoil is applied to a body with a negative value
of cN

Ma
, a reversed lag e!ect would result, that is, a reduction instead of an increase of the

phase angle /. This leads to the conclusion that as yet there is no obvious explanation of
how the #uid memory e!ect can be responsible for the observed trends at low wind speeds.

Finally, note that when / is small (hence, at large u), a small variation in the phase lag
would a!ect only the damping but hardly the sti!ness. So, the observed variations at higher
velocities can perhaps be the result of small amplitude-dependent phase shifts in the
aerodynamic response.

6.2.3. <ortex resonance

Another mechanism which could a!ect the validity of the quasi-steady approach is the
in#uence of the periodic vortex-shedding. This e!ect is predominant in vortex-resonance
phenomena and may interact with the galloping instability (Novak 1971; Parkinson 1989;
Nakamura & Hirata 1994), but in the experiments, a low natural oscillation frequency has
been chosen for the very reason of reducing these e!ects as much as possible. Detailed
experiments on the translational motion of a rectangular cross-section with d/h"2 showed
good agreement with quasi-steady theory for ;/f

0
h'20 for oscillation amplitudes up to

0)2h (Washizu et al. 1978), which corresponds to u'0)3 and aL (43 in the present notation.
These experiments also reveal that there is a trend that the velocity region of vortex-
resonance expands when the oscillation amplitude relative to the cylinder height increases,
but it does not extend to the high level of amplitudes that occur in the present investigation.
Hence, there is no direct evidence as to whether this amplitude e!ect, possibly in combina-
tion with the in#uence of rotation, can explain the results found here.

6.2.4. Reynolds number e+ects

In addition to these unsteady #ow aspects, an explanation for the deviations at low wind
speeds may be sought in steady #ow e!ects, notably the in#uence of the Reynolds number.
As an indirect e!ect, an increase in the boundary layer thickness on the sidewalls of the wind
tunnel at low wind speeds would amplify the blockage e!ect, with respect to the wind speed
at which the steady force measurements were obtained. This will certainly tend to increase
the forces, and hence both the damping and sti!ness e!ect, but not to such a large extent as
observed. This is con"rmed by a comparison with steady force measurements obtained in
a much larger wind tunnel where the blockage e!ect is virtually absent. Moreover, this
revealed that the blockage e!ect would tend to reduce the galloping amplitude rather than
augment it.

Secondly, there is the possibility of a direct Reynolds number e!ect; that is, a change in
the #ow structure around the rectangular beam model itself. In the present con"guration,
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there is no possibility to obtain direct force data at these low wind speeds, but a numerical
#ow simulation may be worthwhile to investigate if such an e!ect indeed occurs. However,
comparison between experiments with two square cross-sections of di!erent size seems to
indicate that the e!ect is slightly stronger for the larger diameter. This would not be in
support of such a direct Reynolds number e!ect.

7. CONCLUSIONS

The galloping behaviour of a prismatic beam with a rectangular cross-section has been
investigated. This beam performs a motion with a single rotational degree of freedom. For
this particular geometry, the e!ect of the unsteady aerodynamic forces can be explained as
a combination of aerodynamic sti!ness and damping terms, the latter being the most
relevant for the instability behaviour. A theoretical prediction of both damping and sti!ness
e!ects for this type of galloping behaviour has been made, based on a quasi-steady
modelling of the aerodynamic forces and which employs steady force data obtained from
wind tunnel tests. The validity of the quasi-steady approach is suggested by the low value of
the natural frequency of the oscillation, in order to avoid vortex-resonance e!ects, and by
taking the rotation arm large with respect to the diameter of the cross-section. This
quasi-steady theory predicts that, as long as no signi"cant nonlinear distortion of the
oscillation mode occurs, the damping and sti!ness e!ects are a function only of the
aerodynamic amplitude of the oscillation, and exactly opposite in sign, i.e. cf (aL )"!c

k
(aL ).

Hence, at the amplitude for which the aerodynamic damping is zero, the sti!ness e!ect
vanishes as well. As a result, when assuming a low level of structural damping, the
limit-cycle oscillation takes place at nearly the natural oscillator frequency, even at mode-
rate wind velocities at which the sti!ness e!ect is signi"cant. This agrees very well with the
experiments.

Dynamic wind tunnel tests were carried out to investigate the galloping behaviour of the
oscillator and in general reasonable agreement was found with the predictions. However,
a number of signi"cant deviations from the quasi-steady predictions were observed, in
particular for the damping e!ect. At moderate wind levels the sti!ness e!ect is in good
agreement with theory, whereas signi"cant deviations are observed for the damping e!ect.
Comparison with experiments on a square section suggests that this e!ect may be a!ected
by the shape of the cross-section, and could possibly be caused by an increased sensitivity to
dynamic curvature. Additional deviations from theory were found to occur for low wind
speeds, with values of the reduced wind speed u below 5, which had also been found for the
square section. Further study is required to investigate whether this is to be attributed to
a basically steady #ow e!ect in the experiment (Reynolds number), or that unsteady
#ow e!ects are responsible for this, such as the in#uence of vortex shedding or wake
vorticity.
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APPENDIX A: THE DETERMINATION OF THE STRUCTURAL DAMPING

In the analysis of the dynamic oscillation behaviour in the main text, only viscous damping
was considered, where the damping force is proportional to the angular displacement
velocity, and the level of which is controlled by means of the inductive damper. For the
experiments the actual amount of structural damping was determined from free-decay
oscillation test of the set-up. Detailed analysis of the results revealed that also small
amounts of frictional and quadratic damping could be identi"ed, i.e. with damping force
components being, respectively, constant or quadratically dependent on the angular velo-
city. The "rst component typically corresponds to the so-called Coulomb (dry) friction,
notably present in the bearings of the angle encoder, while the quadratic term can be traced
in particular to the aerodynamic drag of the oscillator moving in still air.

Including these e!ects, the equation of motion as given by equation (20), now reads

h$#X2h"!A2f
0
hQ #

n
2

C
1

sgn(hQ )#
3n
4

C
2
hQ DhQ DB#ku2c

M
, (A1)

relating to a harmonic oscillation at an angular frequency u"Xu
0
, i.e. for the system with

additional sti!ness e!ects included. The parameters C
1

and C
2

are the coe$cients of
frictional and quadratic damping, respectively, where the factors n/2 and 3n/4 have been
included for normalization.

Upon averaging the following amplitude-transient equation is then obtained, cf.
equation (22),

dhK
dq

"!A(f0#kucf)hK #
C

1
X

#C
2
XhK 2B . (A2)
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For the strong-forcing analysis, the stability of the oscillation is obtained from equation
(31), which now becomes

d

dq
H

s
"!A(f0#kucf) S2hQ 2T#C

1T
n
2

DhQ DU#C
2T

3n
4

DhQ 3 DUB . (A3)

The calculation of the aerodynamic damping coe$cient cf from time-record data, compara-
ble to equation (36), now involves evaluation of equation (A2), and is

cf"!

1

ku A
1

hK
dhK
dq

#f
0
#

C
1

hK X
#C

2
hK XB . (A4)

For limit-cycle oscillations evidently the decay rate term vanishes from the expression, cf.
equation (35). Note the frequency e!ect of X in the nonviscous damping terms.

In order to determine the values of the structural damping coe$cients, the amplitude
decay of free oscillations was observed. In that case, with X"1 and u"0, equation (A2)
gives

dhK
dq

"!(f
0
hK #C

1
#C

2
hK 2) . (A5)

Hence, the damping coe$cients f
0
, C

1
and C

2
can be obtained from a quadratic "t of the

experimentally determined amplitude decay rate. This is illustrated in Figure A1, where the
decay rate is plotted versus the amplitude, for "ve di!erent damper settings (the lowest
setting is with the damper inactive). The curves represent the results of a least-squares
quadratic "t to the data, corresponding to the values of the damping parameters in
Table A1. The concept that the inductive damper introduces only viscous damping, where-
as the frictional and quadratic damping e!ects remain constant, is in good agreement with
the "ndings in the table, where C

1
and C

2
are essentially constant, apart from C

2
at the

highest damping level.
As mentioned, the quadratic damping e!ect can be (partly) related to the aerodynamic

drag on the oscillator components. This includes the drag of the cylinder model inside the
wind tunnel, which should however be excluded from the structural damping, as during the
galloping tests the forces on the cylinder are modelled explicitly. The e!ect of the cylinder
Figure A1. Characterization of the structural damping from amplitude decay rate measurements.



TABLE A1
Experimental damping parameters

Damper setting f
0

C
1

(deg) C
2

(1/deg)

&&0'' 0)0002 0)0091 0)000033
&&1'' 0)0011 0)0098 0)000036
&&2'' 0)0028 0)0107 0)000034
&&3'' 0)0062 0)0114 0)000032
&&4'' 0)0109 0)0108 0)000017
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drag in the free-decay tests can be estimated to contribute to C
2

by the following amount:

(DC
2
)
#:-*/$%3

"

4

3n
kC

D
(rad~1)"

1

135
kC

D
(deg~1).

With the mass parameter k"0)0013 and the cylinder drag coe$cient estimated at C
D
+2,

this yields a contribution to C
2
of about 0)00002 deg~1, which is of the order of half the total

value measured. In the subsequent analysis of the data, this e!ect was compensated for in
"rst approximation, by reducing the value of the quadratic component of the structural
damping, to a constant value of C

2
"0)00001 deg~1.

APPENDIX B: NOMENCLATURE

b cylinder span
c
k

aerodynamic sti!ness coe$cient, de"ned in equation (15)
c
M

oscillator moment coe$cient, 2M/o;2dbR
cf aerodynamic damping coe$cient, de"ned in equation (15)
d cylinder depth ("streamwise dimension)
f frequency
h cylinder height ("cross-#ow dimension)
I moment of inertia
k restoring force sti!ness
M aerodynamic moment around oscillator rotation axis
R oscillator arm length
t time
; wind speed
u reduced wind speed, ;/u

0
R

a angle of attack
e aerodynamic forcing parameter, ku2
f
0

viscous damping coe$cient
h rotational oscillator displacement
k mass parameter, odbR3/2I
o air density
q nondimensional time, u

0
t

u radial frequency, 2n f
X frequency ratio, u/u

0
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